173 research outputs found

    Accuracy and repeatability of joint sparsity multi-component estimation in MR Fingerprinting

    Get PDF
    MR fingerprinting (MRF) is a promising method for quantitative characterization of tissues. Often, voxel-wise measurements are made, assuming a single tissue-type per voxel. Alternatively, the Sparsity Promoting Iterative Joint Non-negative least squares Multi-Component MRF method (SPIJN-MRF) facilitates tissue parameter estima-tion for identified components as well as partial volume segmentations. The aim of this paper was to evaluate the accuracy and repeatability of the SPIJN-MRF parameter estimations and partial volume segmentations. This was done (1) through numerical simulations based on the BrainWeb phantoms and (2) using in vivo acquired MRF data from 5 subjects that were scanned on the same week-day for 8 consecutive weeks. The partial volume segmen-tations of the SPIJN-MRF method were compared to those obtained by two conventional methods: SPM12 and FSL. SPIJN-MRF showed higher accuracy in simulations in comparison to FSL-and SPM12-based segmentations: Fuzzy Tanimoto Coefficients (FTC) comparing these segmentations and Brainweb references were higher than 0.95 for SPIJN-MRF in all the tissues and between 0.6 and 0.7 for SPM12 and FSL in white and gray matter and between 0.5 and 0.6 in CSF. For the in vivo MRF data, the estimated relaxation times were in line with literature and minimal variation was observed. Furthermore, the coefficient of variation (CoV) for estimated tissue volumes with SPIJN-MRF were 10.5% for the myelin water, 6.0% for the white matter, 5.6% for the gray matter, 4.6% for the CSF and 1.1% for the total brain volume. CoVs for CSF and total brain volume measured on the scanned data for SPIJN-MRF were in line with those obtained with SPM12 and FSL. The CoVs for white and gray mat-ter volumes were distinctively higher for SPIJN-MRF than those measured with SPM12 and FSL. In conclusion, the use of SPIJN-MRF provides accurate and precise tissue relaxation parameter estimations taking into account intrinsic partial volume effects. It facilitates obtaining tissue fraction maps of prevalent tissues including myelin water which can be relevant for evaluating diseases affecting the white matter.Radiolog

    Magnetic anomalies in the spin chain system, Sr3_3Cu1x_{1-x}Znx_xIrO6_6

    Full text link
    We report the results of ac and dc magnetization (M) and heat-capacity (C) measurements on the solid solution, Sr3_3Cu1x_{1-x}Znx_xIrO6_6. While the Zn end member is known to form in a rhombohedral pseudo one-dimensional K4_4CdCl6_6 structure with an antiferromagnetic ordering temperature of (TN_N =) 19 K, the Cu end member has been reported to form in a monoclinically distorted form with a Curie temperature of (TC_C =) 19 K. The magnetism of the Zn compound is found to be robust to synthetic conditions and is broadly consistent with the behavior known in the literature. However, we find a lower magnetic ordering temperature (To_o) for our Cu compound (~ 13 K), thereby suggesting that To_o is sensitive to synthetic conditions. The Cu sample appears to be in a spin-glass-like state at low temperatures, judged by a frequency dependence of ac magnetic susceptibility and a broadening of the C anomaly at the onset of magnetic ordering, in sharp contrast to earlier proposals. Small applications of magnetic field, however, drive this system to ferromagnetism as inferred from the M data. Small substitutions for Cu/Zn (x = 0.75 or 0.25) significantly depress magnetic ordering; in other words, To_o varies non-monotonically with x (To_o ~ 6, 3 and 4 K for x = 0.25, 0.5, and 0.67 respectively). The plot of inverse susceptibility versus temperature is non-linear in the paramagnetic state as if correlations within (or among) the magnetic chains continuously vary with temperature. The results establishComment: 7 pages, 7 figures, Revte

    Classical Yang-Mills Black hole hair in anti-de Sitter space

    Get PDF
    The properties of hairy black holes in Einstein–Yang–Mills (EYM) theory are reviewed, focusing on spherically symmetric solutions. In particular, in asymptotically anti-de Sitter space (adS) stable black hole hair is known to exist for frak su(2) EYM. We review recent work in which it is shown that stable hair also exists in frak su(N) EYM for arbitrary N, so that there is no upper limit on how much stable hair a black hole in adS can possess

    Effects of sleep deprivation on neural functioning: an integrative review

    Get PDF
    Sleep deprivation has a broad variety of effects on human performance and neural functioning that manifest themselves at different levels of description. On a macroscopic level, sleep deprivation mainly affects executive functions, especially in novel tasks. Macroscopic and mesoscopic effects of sleep deprivation on brain activity include reduced cortical responsiveness to incoming stimuli, reflecting reduced attention. On a microscopic level, sleep deprivation is associated with increased levels of adenosine, a neuromodulator that has a general inhibitory effect on neural activity. The inhibition of cholinergic nuclei appears particularly relevant, as the associated decrease in cortical acetylcholine seems to cause effects of sleep deprivation on macroscopic brain activity. In general, however, the relationships between the neural effects of sleep deprivation across observation scales are poorly understood and uncovering these relationships should be a primary target in future research

    Managing Learner’s Affective States in Intelligent Tutoring Systems

    Full text link
    Abstract. Recent works in Computer Science, Neurosciences, Education, and Psychology have shown that emotions play an important role in learning. Learner’s cognitive ability depends on his emotions. We will point out the role of emotions in learning, distinguishing the different types and models of emotions which have been considered until now. We will address an important issue con-cerning the different means to detect emotions and introduce recent approaches to measure brain activity using Electroencephalograms (EEG). Knowing the influ-ence of emotional events on learning it becomes important to induce specific emo-tions so that the learner can be in a more adequate state for better learning or memorization. To this end, we will introduce the main components of an emotion-ally intelligent tutoring system able to recognize, interpret and influence learner’s emotions. We will talk about specific virtual agents that can influence learner’s emotions to motivate and encourage him and involve a more cooperative work, particularly in narrative learning environments. Pushing further this paradigm, we will present the advantages and perspectives of subliminal learning which inter

    COVAD survey 2 long-term outcomes: unmet need and protocol

    Get PDF
    Vaccine hesitancy is considered a major barrier to achieving herd immunity against COVID-19. While multiple alternative and synergistic approaches including heterologous vaccination, booster doses, and antiviral drugs have been developed, equitable vaccine uptake remains the foremost strategy to manage pandemic. Although none of the currently approved vaccines are live-attenuated, several reports of disease flares, waning protection, and acute-onset syndromes have emerged as short-term adverse events after vaccination. Hence, scientific literature falls short when discussing potential long-term effects in vulnerable cohorts. The COVAD-2 survey follows on from the baseline COVAD-1 survey with the aim to collect patient-reported data on the long-term safety and tolerability of COVID-19 vaccines in immune modulation. The e-survey has been extensively pilot-tested and validated with translations into multiple languages. Anticipated results will help improve vaccination efforts and reduce the imminent risks of COVID-19 infection, especially in understudied vulnerable groups

    The energy spectrum of cosmic rays beyond the turn-down around 10^17 eV as measured with the surface detector of the Pierre Auger Observatory

    Get PDF
    We present a measurement of the cosmic-ray spectrum above 100 PeV using the part of the surface detector of the Pierre Auger Observatory that has a spacing of 750 m. An inflection of the spectrum is observed, confirming the presence of the so-called second-knee feature. The spectrum is then combined with that of the 1500 m array to produce a single measurement of the flux, linking this spectral feature with the three additional breaks at the highest energies. The combined spectrum, with an energy scale set calorimetrically via fluorescence telescopes and using a single detector type, results in the most statistically and systematically precise measurement of spectral breaks yet obtained. These measurements are critical for furthering our understanding of the highest energy cosmic rays

    Anemia prevalence in women of reproductive age in low- and middle-income countries between 2000 and 2018

    Get PDF
    Anemia is a globally widespread condition in women and is associated with reduced economic productivity and increased mortality worldwide. Here we map annual 2000–2018 geospatial estimates of anemia prevalence in women of reproductive age (15–49 years) across 82 low- and middle-income countries (LMICs), stratify anemia by severity and aggregate results to policy-relevant administrative and national levels. Additionally, we provide subnational disparity analyses to provide a comprehensive overview of anemia prevalence inequalities within these countries and predict progress toward the World Health Organization’s Global Nutrition Target (WHO GNT) to reduce anemia by half by 2030. Our results demonstrate widespread moderate improvements in overall anemia prevalence but identify only three LMICs with a high probability of achieving the WHO GNT by 2030 at a national scale, and no LMIC is expected to achieve the target in all their subnational administrative units. Our maps show where large within-country disparities occur, as well as areas likely to fall short of the WHO GNT, offering precision public health tools so that adequate resource allocation and subsequent interventions can be targeted to the most vulnerable populations.Peer reviewe

    Search for the doubly heavy baryon Ξbc+\it{\Xi}_{bc}^{+} decaying to J/ψΞc+J/\it{\psi} \it{\Xi}_{c}^{+}

    Get PDF
    A first search for the Ξbc+J/ψΞc+\it{\Xi}_{bc}^{+}\to J/\it{\psi}\it{\Xi}_{c}^{+} decay is performed by the LHCb experiment with a data sample of proton-proton collisions, corresponding to an integrated luminosity of 9fb19\,\mathrm{fb}^{-1} recorded at centre-of-mass energies of 7, 8, and 13TeV13\mathrm{\,Te\kern -0.1em V}. Two peaking structures are seen with a local (global) significance of 4.3(2.8)4.3\,(2.8) and 4.1(2.4)4.1\,(2.4) standard deviations at masses of 6571MeV ⁣/c26571\,\mathrm{Me\kern -0.1em V\!/}c^2 and 6694MeV ⁣/c26694\,\mathrm{Me\kern -0.1em V\!/}c^2, respectively. Upper limits are set on the Ξbc+\it{\Xi}_{bc}^{+} baryon production cross-section times the branching fraction relative to that of the Bc+J/ψDs+B_{c}^{+}\to J/\it{\psi} D_{s}^{+} decay at centre-of-mass energies of 8 and 13TeV13\mathrm{\,Te\kern -0.1em V}, in the Ξbc+\it{\Xi}_{bc}^{+} and in the Bc+B_{c}^{+} rapidity and transverse-momentum ranges from 2.0 to 4.5 and 0 to 20GeV ⁣/c20\,\mathrm{Ge\kern -0.1em V\!/}c, respectively. Upper limits are presented as a function of the Ξbc+\it{\Xi}_{bc}^{+} mass and lifetime.Comment: All figures and tables, along with machine-readable versions and any supplementary material and additional information, are available at https://cern.ch/lhcbproject/Publications/p/LHCb-PAPER-2022-005.html (LHCb public pages
    corecore